Retinoic acid proximalizes level-specific properties responsible for intercalary regeneration in axolotl limbs.

نویسندگان

  • K Crawford
  • D L Stocum
چکیده

The objective of this study was to determine whether retinoic acid (RA) coordinately proximalizes positional memory and the cellular recognition system that detects pattern discontinuity in regenerating amphibian limbs. The strategy was to test the capacity of RA-treated blastemas to evoke intercalary regeneration when grafted to an amputation level proximal to their level of origin. Control wrist and ankle, or elbow and knee blastemas treated with the retinoid solvent, dimethylsulphoxide, evoked intercalary regeneration as effectively as untreated blastemas, when grafted to the midstylopodial amputation surface of host limbs. RA-treated wrist and ankle or elbow and knee blastemas were proximalized and formed complete limbs that were at an angle to, or continuous with, the midstylopodium of the host limb. No intercalary regeneration, from either graft or host, was observed in these cases. The results indicate that the cellular mechanism that recognizes disparities between non-neighbouring cells and initiates intercalary regeneration is coordinately proximalized with positional memory. Thus the recognition mechanism and positional memory are directly related. Intercalary regeneration and corrective displacement (affinophoresis), both of which restore a pattern of normal cell neighbours by different means in regenerating axolotl limbs, appear to use the same mechanism to recognize pattern discontinuity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retinoic acid coordinately proximalizes regenerate pattern and blastema differential affinity in axolotl limbs.

An assay that detects position-related differences in affinity of axolotl regeneration blastema cells in vivo was used to test whether retinoic acid, which proximalizes regenerate pattern, simultaneously proximalizes blastema cell affinity. The assay involved autografting or homografting late bud forelimb blastomas derived from the wrist, elbow or midupper arm levels to the dorsal surface of th...

متن کامل

Tissue‐specific reactions to positional discontinuities in the regenerating axolotl limb

We investigated cellular contributions to intercalary regenerates and 180° supernumerary limbs during axolotl limb regeneration using the cell autonomous GFP marker and exchanged blastemas between white and GFP animals. After distal blastemas were grafted to proximal levels tissues of the intercalary regenerate behaved independently with regard to the law of distal transformation; graft epiderm...

متن کامل

Retinoic acid receptor regulation of epimorphic and homeostatic regeneration in the axolotl.

Salamanders are capable of regenerating amputated limbs by generating a mass of lineage-restricted cells called a blastema. Blastemas only generate structures distal to their origin unless treated with retinoic acid (RA), which results in proximodistal (PD) limb duplications. Little is known about the transcriptional network that regulates PD duplication. In this study, we target specific retin...

متن کامل

Activation of a single retinoic acid receptor isoform mediates proximodistal respecification

BACKGROUND The regenerating limb of urodele amphibians is an important system for evaluating the effects of retinoic acid (RA) on pattern formation. Regeneration proceeds by local formation of the blastema, a mesenchymal growth zone which normally only gives rise to structures distal to its level of origin. RA can respecify proximodistal identity in amphibian limb regeneration, and this activit...

متن کامل

Activation of Smad2 but not Smad3 is required to mediate TGF-β signaling during axolotl limb regeneration.

Axolotls are unique among vertebrates in their ability to regenerate tissues, such as limbs, tail and skin. The axolotl limb is the most studied regenerating structure. The process is well characterized morphologically; however, it is not well understood at the molecular level. We demonstrate that TGF-β1 is highly upregulated during regeneration and that TGF-β signaling is necessary for the reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Development

دوره 104 4  شماره 

صفحات  -

تاریخ انتشار 1988